رویکرد حداقل مربعات ماشین بردار پشتیبان مبتنی بر الگوریتم ژنتیک جهت تخمین رتبه اعتباری مشتریان بانک‌ها

Authors

  • احمد پویان فر دکترای مدیریت مالی دانشگاه تهران، ایران
  • سعید فلاح پور دکترای مدیریت مالی دانشگاه تهران، ایران
  • محمدرضا عزیزی کارشناسی ارشدمهندسی صنایع- گرایش مالی، دانشگاه علوم اقتصادی
Abstract:

یکی از مهم¬ترین مسائلی که همواره بانک¬ها و مؤسسات مالی با آن مواجه هستند، مسئله ریسک اعتباری یا احتمال عدم ایفای تعهدات از سوی متقاضیان دریافت کننده تسهیلات اعتباری می¬باشد. رقم قابل توجه مطالبات معوق بانک‌ها در سراسر جهان نشان دهنده اهمیت این موضوع و لزوم توجه به آن می¬باشد. از این رو تاکنون تلاش‌های بسیاری به منظور ارائه مدلی کارا جهت ارزیابی و طبقه بندی هرچه دقیق¬تر متقاضیان تسهیلات اعتباری صورت گرفته است. هدف اصلی این پژوهش بکار گیری روش حداقل مربعات ماشین بردار پشتیبان مبتنی بر الگوریتم ژنتیک (Ga-LSSVM) در ارزیابی ریسک اعتباری متقاضیان تسهیلات اعتباری می¬باشد. بدین منظور از مجموعه داده¬های بانک آلمان در پایگاه داده یادگیری ماشین UCI جهت نمایش اثربخشی و دقت طبقه بندی کننده Ga-LSSVM استفاده شده است. نتایج مدل ارائه شده با مدل آماری لاجیت و رویکردهای بهینه سازی پارامترهای ماشین بردار پشتیبان مقایسه شده است. یافته¬های پژوهش حاکی از آن است که در ارزیابی ریسک اعتباری متقاضیان تسهیلات اعتباری، مدل Ga-LSSVM نسبت به مدل‌های بررسی شده از عملکرد مطلوبی برخوردار می¬باشد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

رویکرد حداقل مربعات ماشین بردار پشتیبان مبتنی بر الگوریتم ژنتیک جهت تخمین رتبه اعتباری مشتریان بانک ها

یکی از مهم¬ترین مسائلی که همواره بانک¬ها و مؤسسات مالی با آن مواجه هستند، مسئله ریسک اعتباری یا احتمال عدم ایفای تعهدات از سوی متقاضیان دریافت کننده تسهیلات اعتباری می¬باشد. رقم قابل توجه مطالبات معوق بانک ها در سراسر جهان نشان دهنده اهمیت این موضوع و لزوم توجه به آن می¬باشد. از این رو تاکنون تلاش های بسیاری به منظور ارائه مدلی کارا جهت ارزیابی و طبقه بندی هرچه دقیق¬تر متقاضیان تسهیلات اعتباری ...

full text

ارزیابی ریسک اعتباری با استفاده از حداقل مربعات ماشین بردار پشتیبان با به کارگیری الگوریتم ژنتیک به منظور انتخاب پارامترها

چکیده یکی از مهم ترین مسائلی که همواره بانک ها و موسسات مالی با آن مواجه هستند، مسئله ریسک اعتباری یا احتمال عدم ایفای تعهدات از سوی متقاضیان دریافت کننده تسهیلات اعتباری می باشد. رقم قابل توجه مطالبات معوق بانک ها در سراسر جهان نشان دهنده اهمیت این موضوع و لزوم توجه به آن می باشد. از این رو تاکنون تلاش های بسیاری به منظور ارائه مدلی کارا جهت ارزیابی و طبقه بندی هرچه دقیق تر متقاضیان تسهیلات ا...

مدیریت ریسک اعتباری مشتریان بانکی با استفاده از روش ماشین بردار تصمیم بهبودیافته با الگوریتم ژنتیک با رویکرد داده‌کاوی

مدیریت ریسک اعتباری، رتبه‌بندی اعتباری و ارزیابی میزان ریسک مشتریان، در کنار جذب منابع از اهمیت بالایی برای بانک‌ها برخوردار است؛ زیرا اگر بانک‌ها با تخصیص بهینۀ منابع و کسب درآمد بین فرایند تجهیز و تخصیص منابع خود نتوانند توازن ایجاد کنند، در آینده با مشکلات زیادی روبه‌رو می‌شوند. براساس آمارهای رسمی منتشرشده از سوی بانک مرکزی ج.ا.ا در سال‌های اخیر، میزان مطالبات معوق بانک‌ها بسیار افزایش‌ یاف...

full text

رتبه بندی اعتباری با ماشین بردار پشتیبان

ارزیابی ریسک اعتباری یکی از مهمترین موضوعات در زمینه مدیریت ریسک مالی می باشد. با توجه به بحران مالی اخیر و نگرانی های نظارتی بازل ii ، ارزیابی ریسک اعتباری، تمرکز اصلی خدمات مالی و صنعت بانکداری شده است. به خصوص برای موسسات اعتباری، مانند بانک های تجاری ، شرکت های اعتباری ، بانک های مرکزی و دولت ها، توانائی تبعیض قائل شدن بین شرکت ها و بانک های ورشکسته از غیر ورشکسته بسیار مهم است. رتبه بندی ا...

طبقه بندی متقاضیان تسهیلات اعتباری بانکها با استفاده از تکنیک ماشین بردار پشتیبان

در صنعت بانکداری یکی از موضوعاتی که همواره بایستی مدنظر سیاستگذاران اعتباری قرار دا شته باشد، مبحث مدیریتریسک است. در بین ریسک های مختلفی که بان کها با آن مواجهند, ریسک اعتباری از با اهمیت ترین آن ها است که اززیان های ناشی از ناتوانی یا عدم تمایل مشتری به ایفای تعهدات خویش در برابر بانک حاصل م یگردد.جهت مدیریت و کنترل ریسک مذکور , سیستم های طبقه بندی اعتباری مشتریان ضرورتی انکار ناپذیر است . چن...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 17

pages  133- 158

publication date 2013-12-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023